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Novel stereoselective synthesis of all four diastereomers of
3a-methyl-pyrrolo[3,4-c]piperidine from glycine ethyl ester
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Abstract—Asymmetric synthesis of all four diastereomers of 3a-methyl-pyrrolo[3,4-c]piperidine is described herein. The key steps in
this synthesis are the highly diastereoselective hydrogenation of an alkenyl nitrile through a hydroxyl-directed or sterically con-
trolled hydrogenation, and the resolution of enantiomers using a chiral auxiliary.
� 2007 Elsevier Ltd. All rights reserved.
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Chiral piperidine derivatives display a broad range of
important biological activities and are versatile precur-
sors of naturally occurring alkaloids.1 As a consequence,
asymmetric synthesis of these piperidines continues to
attract considerable attention. [3,4-c]Pyrrolopiperidine
compounds have recently received great interest due to
their antagonist profiles of Substance P (SP),2 which acts
as a neurotransmitter and is the most abundant neuro-
kinin in the mammalian central nervous system
(CNS).3 Additionally, chiral [3,4-b]pyrrolopiperidines
also serve as useful subunits of quinolones having highly
potent antibacterials, especially moxifloxacin (Fig. 1).4

Certainly, the development of new enantiopure [3,4-c]-
pyrrolopiperidine compounds is important in view of
the above described usefulness in organic synthesis.
Herein we wish to report the asymmetric synthesis of
four new [3,4-c]pyrrolopiperidines starting from glycine
ethyl ester.5 These molecules contain two chiral centres,
one of which is a quaternary carbon.6

It was expected that the diastereo and enantioselective
construction of stereocentres would be enabled the reso-
lution of enantiomer using chiral auxiliary followed by
stereoselective hydrogenation. Retrosynthetic analysis
towards the synthesis of [3,4-c]pyrrolopiperidines is
shown in Scheme 1.
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Our synthesis started with commercially available
glycine ethyl ester hydrochloride 2 as illustrated in
Scheme 2. Compound 3 was prepared by modification
of Rapoport’s procedure.7 Boc-protection of the amino
group in glycine ethyl ester followed by Michael addi-
tion to ethyl acrylate and cyclization by Dieckmann
reaction under basic condition gave 4-ethoxycarbonyl-
2-pyrrolidinone 3 in good yield. The treatment of 3 with
iodomethane in the presence of K2CO3 gave 4-ethoxy-
carbonyl-4-methyl-2-pyrrolidinone 4 that possesses an
all-carbon quaternary stereocentre in 92% yield. The
Horner–Wadsworth–Emmons olefination of 4 with
diethyl cyanomethylphosphonate provided the corre-
sponding cyanoalkenylpyrrolidine 5 in 98% yield. To re-
solve the enantiomers of cyanoalkenylpyrrolidine 5, we
examined several chiral auxiliaries (camphorsultams,8
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benzosultams9 and 2-oxazolidinones10) and found that
readily commercially available (S)-4-benzyl-2-oxazolidi-
none 7 was the best for the separation of diastereoiso-
mers by column chromatography.11 Saponification of
the ethyl ester of 6 with NaOH followed by coupling
with (S)-4-benzyl-2-oxazolidinone 7 using a mixed anhy-
dride method (t-BuCOCl, LiCl, Et3N)12 afforded a 1:1.1
mixture of acyloxazolidinones 8a and 8b in 94% yield.
This diastereomeric mixture was readily separated by
column chromatography on up to 25 g scale.13 Next,
treatment of acyloxazolidinone 8a with lithium ethoxide
cleaved the auxiliary and afforded the enantiopure ethyl
ester 9a in 66% yield.
Catalytic hydrogenation of both alkenyl and nitrile
functions in 9a (50 psi H2, 10% Pd–C) and in situ Boc-
protection of amine provided cis isomer 10a as the
major product, which is obviously obtained by steric
control. This stereoselective hydrogenation can be
performed in a variety of solvents,14 more efficiently in
high dielectric media in general. The preparative scale
of stereoselective hydrogenation in MeOH afforded cis
isomer 10a in 80% yield with 91:9 dr. Reduction of the
ester group with LiAlH4 followed by the mesylation of
the hydroxyl group and cyclization under NaH in
DMF afforded a bis-Boc-protected [3,4-c]pyrrolopiperi-
dine 12a in 88% yield. Finally, treatment of 12a with



Figure 2. X-ray structure of (S,S)-1a.
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MeOH/HCl gave the desired [S,S]-3a-methyl-pyrrolo-
[3,4-c]piperidine 1a in 86% yield. For identification of
the absolute stereochemistry, [3,4-c]pyrrolopiperidine
1a was recrystallized from MeOH and subjected to
X-ray crystallographic analysis (Fig. 2).15

Likewise, acyloxazolidinone 8b was transformed into
[R,R]-3a-methyl-pyrrolo[3,4-c]piperidine 1b using an
analogous sequence of reactions (Scheme 2). The analyt-
ical and spectroscopic data for all of the compounds in
this sequence are provided in Supplementary data.

To obtain the trans-pyrrolo[3,4-c]piperidine, we em-
ployed a hydroxyl-directed hydrogenation,16 wherein
the substrate is bound to the catalyst surface on the
same side as the hydroxyl group, resulting in the addi-
tion of hydrogen syn to the coordinating moiety. Treat-
ment of acyloxazolidinone 8a with sodium borohydride
afforded the enantiopure alcohol 13a in 80% yield. The
hydrogenation of 13a (50 psi H2, 10% Pd–C, (Boc)2O,
EtOAc) provided trans isomer 11c as the major product
(dr 13:1) in 82% yield (Scheme 3).14 Mesylation of the
N
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hydroxyl group followed by cyclization using NaH in
DMF and deprotection of Boc under MeOH/HCl affor-
ded the desired [S,R]-3a-methyl-pyrrolo[3,4-c]piperidine
1c in good yield. Acyloxazolidinone 8b was also trans-
formed into [R,S]-3a-methyl-pyrrolo[3,4-c]piperidine 1d
using an analogous sequence of reactions.

In conclusion, we have established a new strategy for the
synthesis of chiral pyrrolo[3,4-c]piperidine compounds
possessing an all-carbon quaternary stereocentre at the
3a position. This asymmetric route would be potentially
useful for the synthesis of numerous 3a-substituted-pyr-
rolo[3,4-c]piperidines,2b which is now in progress and
will be reported in due course.
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